Metabolic Engineering - Cellular Engineering - Protein Engineering - Synthetic Biology - Biosensors

Our research group does application driven fundamental research to enable solutions to problems in sustainable chemical production, human health, and national defense. We use genetic engineering and molecular biotechnology to create biomolecules and biosystems with improved properties for various applications. We use a variety biochemical and biophysical methods to characterize these systems. Our projects are described below.


Metabolic & Cellular Engineering of Oleochemical Production - We are engineering yeast to be efficient producers of oleochemicals such as omega-3 fatty acids, specialty fatty acids, dicarboxylic acids, and fatty alcohols. This work involves cloning non-native genes into new microbes, and metabolic engineering to improve pathway flux. This work is supported by funding from the NSF, NASA, USDA, and FPRF.

Researchers: Difeng Gao, Michael Spagnuolo, Vijay Ganesen, Allison Yaguchi, Matt Brabender, Meredith Bailey, Spencer Smith

Collaborators: Ian Wheeldon (UCR), Chris Saski (CU)


Metabolic & Cellular Engineering of Natural Products - We are engineering yeast to be efficient producers of natural product compounds. This work involves cloning non-native genes into new microbes, and cellular/metabolic engineering to improve pathway flux. This work is supported by funding from the NSF.

Researchers: Vijay Ganesen

Collaborators: Ian Wheeldon (UCR)


Engineering Utilization of Non-Conventional Feedstocks - We are engineering microbial systems to utilize more recalcitrant and ill-defined feedstocks. Our work includes engineering of xylose metabolism, lignin metabolism, as well utilization of process and human wastes. This work is supported by funding from the NSF, NASA, DOE, USDA, and FPRF.

Researchers: Difeng Gao, Allison Yaguchi, Michael Spagnuolo, Dyllan Rives, Matt Brabender, Scott Anglin, Spencer Smith

Collaborators: Mark Thies (CU), John Hogan (NASA), Yi Zheng (CU)


Yeast & Mammalian Synthetic Biology - We are engineering advanced, fine-tuned, and metabolite responsive genetic engineering tools that enable more precise engineering of non-conventional yeast. We aim to create novel gene expression systems, and genome editing tools, such as CRISPR-Cas9. This work is supported by funding from the NSF, NASA, and FPRF.

Researchers: Difeng Gao, Michael Spagnuolo, Allison Yaguchi, Spencer Smith, Vijay Ganesen, Scott Anglin, Charles Wang

Collaborators: Ian Wheeldon (UCR), Marc Birtwistle (CU)


Engineering Yeast & Mammalian Protein Secretion - We are engineering yeast and CHO cells to be more efficient in sereting enzymes and biopharmaceuticals at high levels. We aim to address several bottlenecks hinding high productivities through genetic engineering, metabolic engineering, and cellular engineering. This work is supported by funding from NSF I/UCRC and DOE.

Researchers: Dyllan Rives, Scott Anglin

Collaborators: Sarah Harcum (CU)

 


Microbial Radiation Biosensors - We are studying metabolic response and tolerance to different types and doses of ionizing radiation. We are working towards engineering systems that discriminate source and dose of radiation that can be autonomously deployed to report on nuclear weapons proliferation.

Researchers: Molly Wintenberg, Alex Summers

Collaborators: Nicole Martinez (CU), Lisa Manglass (CU), Adam Willey (CU)




Protein Engineering for Biosensing Applications - We are studying protein-polymer interactions in tethered systems useful for biosensing applications. We are also studying extremophile enzyme structures in order to learn how enzymes can be engineered for functionality across a wide range of temperatures and environmental conditions. Our work is focused on improving enzyme activity in biosensing applications. This work is supported by funding from the US Air Force and DTRA.

Researchers: Weigao Wang, Max Hilbert

Collaborators: Sapna Sarupria and Siva Dasetty (CU)


Engineering Molecular Biomechanical Sensing Proteins - Our work seeks to engineer novel protein seuqences that are able to repsond to applies shear or tensile forces. Such constructs can be used to fundamentally understand force-regulated biological processes, such as blood clotting, and in therapies for stroke and blood clotting disorders.

Researchers:

Collaborators: Nathan Hudson (East Carolina University)

Positions Available

For Graduate Students

Prospective students interested in research in the Blenner Research Group should apply to the Clemson University graduate program in the College of Engineering & Science. Clemson graduate students and applying students interested in the Blenner Lab should email here. We are currently seeking students for the following types of projects: (1) Engineering non-model yeast for bioproduction, (2) Engineering oleaginous yeast for production of omega-3 fatty acids and oleochemicals, (3) Systems biology of microbial radiation biosensors, (4) Engineering of proteins for targetted therapies across the blood-brain barrier.

MS Students enrolled at Clemson, in Chemical Engineering, Bioengineering, Biological Sciences, or Biosystems Engineering, are welcome to do research in our lab. Interested student should send a CV and a brief statement of interests to Dr. Blenner.

Postdoctoral Fellows

We have an active opening for a postdoc to work on gene editing delivery across the blood brain barrier to treat brain diseases. Please contact Dr. Mark Blenner if you are interested in applying by August 1, 2018.

Supported postdoctoral fellows should contact Dr. Mark Blenner if you are interested in research in the Blenner Research Group.

For Undergraduate Students

Undergraduate research positions are available only for students willing to spend significant time training and working on high impact research leading to publication in a scholarly journal. Students must be able to work and think independently, must be detailed oriented, and can become meticulous in record keeping. Undergraduates who are interested in protein engineering or synthetic biology for biofuels, sustainable chemical production, or protein therapeutics should send a CV and brief statement of interests here.

Calhoun Honors Students

Current Honors students interested in doing their thesis research in the Blenner lab should contact Dr. Blenner.

Creative Inquiry

Learn more about our project, "Sustainable Chemical Production in Engineered Bacteria" on the Creative Inquiry website.

Learn more about our project, "Engineering Protein Post-Translational Modifications for Therapeutics" on the Creative Inquiry website.

Learn more about our project, "Sustainable Chemical Production in Engineered Yeast" on the Creative Inquiry website.

Learn more about our project, "Getting to Mars with Microbes" on the Creative Inquiry website.

Preference will be given to students that are willing to train during the summer.